![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cgsexg | Unicode version |
Description: Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007.) |
Ref | Expression |
---|---|
cgsexg.1 | |
cgsexg.2 |
Ref | Expression |
---|---|
cgsexg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgsexg.2 | . . . 4 | |
2 | 1 | biimpa 484 | . . 3 |
3 | 2 | exlimiv 1722 | . 2 |
4 | elisset 3120 | . . . 4 | |
5 | cgsexg.1 | . . . . 5 | |
6 | 5 | eximi 1656 | . . . 4 |
7 | 4, 6 | syl 16 | . . 3 |
8 | 1 | biimprcd 225 | . . . . 5 |
9 | 8 | ancld 553 | . . . 4 |
10 | 9 | eximdv 1710 | . . 3 |
11 | 7, 10 | syl5com 30 | . 2 |
12 | 3, 11 | impbid2 204 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 |
Copyright terms: Public domain | W3C validator |