Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  chfnrn Unicode version

Theorem chfnrn 5998
 Description: The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999.)
Assertion
Ref Expression
chfnrn
Distinct variable groups:   ,   ,

Proof of Theorem chfnrn
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 fvelrnb 5920 . . . . 5
21biimpd 207 . . . 4
3 eleq1 2529 . . . . . . 7
43biimpcd 224 . . . . . 6
54ralimi 2850 . . . . 5
6 rexim 2922 . . . . 5
75, 6syl 16 . . . 4
82, 7sylan9 657 . . 3
9 eluni2 4253 . . 3
108, 9syl6ibr 227 . 2
1110ssrdv 3509 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  /\wa 369  =wceq 1395  e.wcel 1818  A.wral 2807  E.wrex 2808  C_wss 3475  U.cuni 4249  rancrn 5005  Fnwfn 5588  `cfv 5593 This theorem is referenced by:  stoweidlem59  31841 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-iota 5556  df-fun 5595  df-fn 5596  df-fv 5601
 Copyright terms: Public domain W3C validator