![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cjreb | Unicode version |
Description: A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
cjreb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recl 12943 | . . . . . 6 | |
2 | 1 | recnd 9643 | . . . . 5 |
3 | ax-icn 9572 | . . . . . 6 | |
4 | imcl 12944 | . . . . . . 7 | |
5 | 4 | recnd 9643 | . . . . . 6 |
6 | mulcl 9597 | . . . . . 6 | |
7 | 3, 5, 6 | sylancr 663 | . . . . 5 |
8 | 2, 7 | negsubd 9960 | . . . 4 |
9 | mulneg2 10019 | . . . . . 6 | |
10 | 3, 5, 9 | sylancr 663 | . . . . 5 |
11 | 10 | oveq2d 6312 | . . . 4 |
12 | remim 12950 | . . . 4 | |
13 | 8, 11, 12 | 3eqtr4rd 2509 | . . 3 |
14 | replim 12949 | . . 3 | |
15 | 13, 14 | eqeq12d 2479 | . 2 |
16 | 5 | negcld 9941 | . . . 4 |
17 | mulcl 9597 | . . . 4 | |
18 | 3, 16, 17 | sylancr 663 | . . 3 |
19 | 2, 18, 7 | addcand 9804 | . 2 |
20 | eqcom 2466 | . . . 4 | |
21 | 5 | eqnegd 10290 | . . . 4 |
22 | 20, 21 | syl5bb 257 | . . 3 |
23 | ine0 10017 | . . . . . 6 | |
24 | 3, 23 | pm3.2i 455 | . . . . 5 |
25 | 24 | a1i 11 | . . . 4 |
26 | mulcan 10211 | . . . 4 | |
27 | 16, 5, 25, 26 | syl3anc 1228 | . . 3 |
28 | reim0b 12952 | . . 3 | |
29 | 22, 27, 28 | 3bitr4d 285 | . 2 |
30 | 15, 19, 29 | 3bitrrd 280 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 ` cfv 5593 (class class class)co 6296
cc 9511 cr 9512 0 cc0 9513 ci 9515
caddc 9516 cmul 9518 cmin 9828 -u cneg 9829 ccj 12929 cre 12930 cim 12931 |
This theorem is referenced by: cjre 12972 cjmulrcl 12977 cjrebi 13007 cjrebd 13035 hire 26011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-2 10619 df-cj 12932 df-re 12933 df-im 12934 |
Copyright terms: Public domain | W3C validator |