![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cju | Unicode version |
Description: The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.) |
Ref | Expression |
---|---|
cju |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 9613 | . . 3 | |
2 | recn 9603 | . . . . . . 7 | |
3 | ax-icn 9572 | . . . . . . . 8 | |
4 | recn 9603 | . . . . . . . 8 | |
5 | mulcl 9597 | . . . . . . . 8 | |
6 | 3, 4, 5 | sylancr 663 | . . . . . . 7 |
7 | subcl 9842 | . . . . . . 7 | |
8 | 2, 6, 7 | syl2an 477 | . . . . . 6 |
9 | 2 | adantr 465 | . . . . . . . 8 |
10 | 6 | adantl 466 | . . . . . . . 8 |
11 | 9, 10, 9 | ppncand 9994 | . . . . . . 7 |
12 | readdcl 9596 | . . . . . . . . 9 | |
13 | 12 | anidms 645 | . . . . . . . 8 |
14 | 13 | adantr 465 | . . . . . . 7 |
15 | 11, 14 | eqeltrd 2545 | . . . . . 6 |
16 | 9, 10, 10 | pnncand 9993 | . . . . . . . . . 10 |
17 | 3 | a1i 11 | . . . . . . . . . . 11 |
18 | 4 | adantl 466 | . . . . . . . . . . 11 |
19 | 17, 18, 18 | adddid 9641 | . . . . . . . . . 10 |
20 | 16, 19 | eqtr4d 2501 | . . . . . . . . 9 |
21 | 20 | oveq2d 6312 | . . . . . . . 8 |
22 | 18, 18 | addcld 9636 | . . . . . . . . 9 |
23 | mulass 9601 | . . . . . . . . . 10 | |
24 | 3, 3, 23 | mp3an12 1314 | . . . . . . . . 9 |
25 | 22, 24 | syl 16 | . . . . . . . 8 |
26 | 21, 25 | eqtr4d 2501 | . . . . . . 7 |
27 | ixi 10203 | . . . . . . . . 9 | |
28 | 1re 9616 | . . . . . . . . . 10 | |
29 | 28 | renegcli 9903 | . . . . . . . . 9 |
30 | 27, 29 | eqeltri 2541 | . . . . . . . 8 |
31 | simpr 461 | . . . . . . . . 9 | |
32 | 31, 31 | readdcld 9644 | . . . . . . . 8 |
33 | remulcl 9598 | . . . . . . . 8 | |
34 | 30, 32, 33 | sylancr 663 | . . . . . . 7 |
35 | 26, 34 | eqeltrd 2545 | . . . . . 6 |
36 | oveq2 6304 | . . . . . . . . 9 | |
37 | 36 | eleq1d 2526 | . . . . . . . 8 |
38 | oveq2 6304 | . . . . . . . . . 10 | |
39 | 38 | oveq2d 6312 | . . . . . . . . 9 |
40 | 39 | eleq1d 2526 | . . . . . . . 8 |
41 | 37, 40 | anbi12d 710 | . . . . . . 7 |
42 | 41 | rspcev 3210 | . . . . . 6 |
43 | 8, 15, 35, 42 | syl12anc 1226 | . . . . 5 |
44 | oveq1 6303 | . . . . . . . 8 | |
45 | 44 | eleq1d 2526 | . . . . . . 7 |
46 | oveq1 6303 | . . . . . . . . 9 | |
47 | 46 | oveq2d 6312 | . . . . . . . 8 |
48 | 47 | eleq1d 2526 | . . . . . . 7 |
49 | 45, 48 | anbi12d 710 | . . . . . 6 |
50 | 49 | rexbidv 2968 | . . . . 5 |
51 | 43, 50 | syl5ibrcom 222 | . . . 4 |
52 | 51 | rexlimivv 2954 | . . 3 |
53 | 1, 52 | syl 16 | . 2 |
54 | an4 824 | . . . 4 | |
55 | resubcl 9906 | . . . . . . 7 | |
56 | pnpcan 9881 | . . . . . . . . 9 | |
57 | 56 | 3expb 1197 | . . . . . . . 8 |
58 | 57 | eleq1d 2526 | . . . . . . 7 |
59 | 55, 58 | syl5ib 219 | . . . . . 6 |
60 | resubcl 9906 | . . . . . . . 8 | |
61 | 60 | ancoms 453 | . . . . . . 7 |
62 | 3 | a1i 11 | . . . . . . . . . 10 |
63 | subcl 9842 | . . . . . . . . . . 11 | |
64 | 63 | adantrl 715 | . . . . . . . . . 10 |
65 | subcl 9842 | . . . . . . . . . . 11 | |
66 | 65 | adantrr 716 | . . . . . . . . . 10 |
67 | 62, 64, 66 | subdid 10037 | . . . . . . . . 9 |
68 | nnncan1 9878 | . . . . . . . . . . . 12 | |
69 | 68 | 3com23 1202 | . . . . . . . . . . 11 |
70 | 69 | 3expb 1197 | . . . . . . . . . 10 |
71 | 70 | oveq2d 6312 | . . . . . . . . 9 |
72 | 67, 71 | eqtr3d 2500 | . . . . . . . 8 |
73 | 72 | eleq1d 2526 | . . . . . . 7 |
74 | 61, 73 | syl5ib 219 | . . . . . 6 |
75 | 59, 74 | anim12d 563 | . . . . 5 |
76 | rimul 10552 | . . . . . 6 | |
77 | 76 | a1i 11 | . . . . 5 |
78 | subeq0 9868 | . . . . . . 7 | |
79 | 78 | biimpd 207 | . . . . . 6 |
80 | 79 | adantl 466 | . . . . 5 |
81 | 75, 77, 80 | 3syld 55 | . . . 4 |
82 | 54, 81 | syl5bi 217 | . . 3 |
83 | 82 | ralrimivva 2878 | . 2 |
84 | oveq2 6304 | . . . . 5 | |
85 | 84 | eleq1d 2526 | . . . 4 |
86 | oveq2 6304 | . . . . . 6 | |
87 | 86 | oveq2d 6312 | . . . . 5 |
88 | 87 | eleq1d 2526 | . . . 4 |
89 | 85, 88 | anbi12d 710 | . . 3 |
90 | 89 | reu4 3293 | . 2 |
91 | 53, 83, 90 | sylanbrc 664 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 A. wral 2807
E. wrex 2808 E! wreu 2809 (class class class)co 6296
cc 9511 cr 9512 0 cc0 9513 1 c1 9514
ci 9515
caddc 9516 cmul 9518 cmin 9828 -u cneg 9829 |
This theorem is referenced by: cjth 12936 cjf 12937 remim 12950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 |
Copyright terms: Public domain | W3C validator |