![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > class2set | Unicode version |
Description: Construct, from any class , a set equal to it when the class exists and equal to the empty set when the class is proper. This theorem shows that the constructed set always exists. (Contributed by NM, 16-Oct-2003.) |
Ref | Expression |
---|---|
class2set |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabexg 4602 | . 2 | |
2 | simpl 457 | . . . . 5 | |
3 | 2 | nrexdv 2913 | . . . 4 |
4 | rabn0 3805 | . . . . 5 | |
5 | 4 | necon1bbii 2721 | . . . 4 |
6 | 3, 5 | sylib 196 | . . 3 |
7 | 0ex 4582 | . . 3 | |
8 | 6, 7 | syl6eqel 2553 | . 2 |
9 | 1, 8 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 = wceq 1395
e. wcel 1818 E. wrex 2808 { crab 2811
cvv 3109
c0 3784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-in 3482 df-ss 3489 df-nul 3785 |
Copyright terms: Public domain | W3C validator |