![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > class2seteq | Unicode version |
Description: Equality theorem based on class2set 4619. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Raph Levien, 30-Jun-2006.) |
Ref | Expression |
---|---|
class2seteq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3118 | . 2 | |
2 | ax-1 6 | . . . . 5 | |
3 | 2 | ralrimiv 2869 | . . . 4 |
4 | rabid2 3035 | . . . 4 | |
5 | 3, 4 | sylibr 212 | . . 3 |
6 | 5 | eqcomd 2465 | . 2 |
7 | 1, 6 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 A. wral 2807 { crab 2811
cvv 3109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-ral 2812 df-rab 2816 df-v 3111 |
Copyright terms: Public domain | W3C validator |