MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clelsb3 Unicode version

Theorem clelsb3 2578
Description: Substitution applied to an atomic wff (class version of elsb3 2178). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
clelsb3
Distinct variable group:   ,

Proof of Theorem clelsb3
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nfv 1707 . . 3
21sbco2 2158 . 2
3 nfv 1707 . . . 4
4 eleq1 2529 . . . 4
53, 4sbie 2149 . . 3
65sbbii 1746 . 2
7 nfv 1707 . . 3
8 eleq1 2529 . . 3
97, 8sbie 2149 . 2
102, 6, 93bitr3i 275 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  [wsb 1739  e.wcel 1818
This theorem is referenced by:  hblem  2580  cbvreu  3082  sbcel1v  3392  sbcel1gvOLD  3393  rmo3  3429  kmlem15  8565  iuninc  27428  measiuns  28188  ballotlemodife  28436  ellimcabssub0  31623  bj-nfcf  34492  frege70  37961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740  df-cleq 2449  df-clel 2452
  Copyright terms: Public domain W3C validator