![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cleqf | Unicode version |
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. See also cleqh 2572. (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Nov-2019.) |
Ref | Expression |
---|---|
cleqf.1 | |
cleqf.2 |
Ref | Expression |
---|---|
cleqf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cleqf.1 | . . 3 | |
2 | 1 | nfcrii 2611 | . 2 |
3 | cleqf.2 | . . 3 | |
4 | 3 | nfcrii 2611 | . 2 |
5 | 2, 4 | cleqh 2572 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 A. wal 1393
= wceq 1395 e. wcel 1818 F/_ wnfc 2605 |
This theorem is referenced by: abid2f 2648 abid2fOLD 2649 n0f 3793 iunab 4376 iinab 4391 mbfposr 22059 mbfinf 22072 itg1climres 22121 compab 31350 bnj1366 33888 bj-rabtrALT 34498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-cleq 2449 df-clel 2452 df-nfc 2607 |
Copyright terms: Public domain | W3C validator |