MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleqf Unicode version

Theorem cleqf 2646
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. See also cleqh 2572. (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Nov-2019.)
Hypotheses
Ref Expression
cleqf.1
cleqf.2
Assertion
Ref Expression
cleqf

Proof of Theorem cleqf
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 cleqf.1 . . 3
21nfcrii 2611 . 2
3 cleqf.2 . . 3
43nfcrii 2611 . 2
52, 4cleqh 2572 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  A.wal 1393  =wceq 1395  e.wcel 1818  F/_wnfc 2605
This theorem is referenced by:  abid2f  2648  abid2fOLD  2649  n0f  3793  iunab  4376  iinab  4391  mbfposr  22059  mbfinf  22072  itg1climres  22121  compab  31350  bnj1366  33888  bj-rabtrALT  34498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-cleq 2449  df-clel 2452  df-nfc 2607
  Copyright terms: Public domain W3C validator