Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleqfOLD Unicode version

Theorem cleqfOLD 2647
 Description: Obsolete proof of cleqf 2646 as of 17-Nov-2019. (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
cleqf.1
cleqf.2
Assertion
Ref Expression
cleqfOLD

Proof of Theorem cleqfOLD
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2450 . 2
2 nfv 1707 . . 3
3 cleqf.1 . . . . 5
43nfcri 2612 . . . 4
5 cleqf.2 . . . . 5
65nfcri 2612 . . . 4
74, 6nfbi 1934 . . 3
8 eleq1 2529 . . . 4
9 eleq1 2529 . . . 4
108, 9bibi12d 321 . . 3
112, 7, 10cbval 2021 . 2
121, 11bitr4i 252 1
 Colors of variables: wff setvar class Syntax hints:  <->wb 184  A.wal 1393  =wceq 1395  e.wcel 1818  F/_wnfc 2605 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-cleq 2449  df-clel 2452  df-nfc 2607
 Copyright terms: Public domain W3C validator