![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cleqh | Unicode version |
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. See also cleqf 2646. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 14-Nov-2019.) |
Ref | Expression |
---|---|
cleqh.1 | |
cleqh.2 |
Ref | Expression |
---|---|
cleqh |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2450 | . 2 | |
2 | nfv 1707 | . . 3 | |
3 | cleqh.1 | . . . . 5 | |
4 | 3 | nfi 1623 | . . . 4 |
5 | cleqh.2 | . . . . 5 | |
6 | 5 | nfi 1623 | . . . 4 |
7 | 4, 6 | nfbi 1934 | . . 3 |
8 | eleq1 2529 | . . . 4 | |
9 | eleq1 2529 | . . . 4 | |
10 | 8, 9 | bibi12d 321 | . . 3 |
11 | 2, 7, 10 | cbval 2021 | . 2 |
12 | 1, 11 | bitr4i 252 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 = wceq 1395 e. wcel 1818 |
This theorem is referenced by: abeq2 2581 abbi 2588 cleqf 2646 abeq2f 27398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-cleq 2449 df-clel 2452 |
Copyright terms: Public domain | W3C validator |