MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleqhOLD Unicode version

Theorem cleqhOLD 2573
Description: Obsolete proof of cleqh 2572 as of 14-Nov-2019. (Contributed by NM, 26-May-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
cleqh.1
cleqh.2
Assertion
Ref Expression
cleqhOLD
Distinct variable groups:   ,   ,   ,

Proof of Theorem cleqhOLD
StepHypRef Expression
1 dfcleq 2450 . 2
2 ax-5 1704 . . . 4
3 dfbi2 628 . . . . 5
4 cleqh.1 . . . . . . 7
5 cleqh.2 . . . . . . 7
64, 5hbim 1922 . . . . . 6
75, 4hbim 1922 . . . . . 6
86, 7hban 1931 . . . . 5
93, 8hbxfrbi 1643 . . . 4
10 eleq1 2529 . . . . . 6
11 eleq1 2529 . . . . . 6
1210, 11bibi12d 321 . . . . 5
1312biimpd 207 . . . 4
142, 9, 13cbv3h 2016 . . 3
1512equcoms 1795 . . . . 5
1615biimprd 223 . . . 4
179, 2, 16cbv3h 2016 . . 3
1814, 17impbii 188 . 2
191, 18bitr4i 252 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  =wceq 1395  e.wcel 1818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-cleq 2449  df-clel 2452
  Copyright terms: Public domain W3C validator