![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cleqhOLD | Unicode version |
Description: Obsolete proof of cleqh 2572 as of 14-Nov-2019. (Contributed by NM, 26-May-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cleqh.1 | |
cleqh.2 |
Ref | Expression |
---|---|
cleqhOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2450 | . 2 | |
2 | ax-5 1704 | . . . 4 | |
3 | dfbi2 628 | . . . . 5 | |
4 | cleqh.1 | . . . . . . 7 | |
5 | cleqh.2 | . . . . . . 7 | |
6 | 4, 5 | hbim 1922 | . . . . . 6 |
7 | 5, 4 | hbim 1922 | . . . . . 6 |
8 | 6, 7 | hban 1931 | . . . . 5 |
9 | 3, 8 | hbxfrbi 1643 | . . . 4 |
10 | eleq1 2529 | . . . . . 6 | |
11 | eleq1 2529 | . . . . . 6 | |
12 | 10, 11 | bibi12d 321 | . . . . 5 |
13 | 12 | biimpd 207 | . . . 4 |
14 | 2, 9, 13 | cbv3h 2016 | . . 3 |
15 | 12 | equcoms 1795 | . . . . 5 |
16 | 15 | biimprd 223 | . . . 4 |
17 | 9, 2, 16 | cbv3h 2016 | . . 3 |
18 | 14, 17 | impbii 188 | . 2 |
19 | 1, 18 | bitr4i 252 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
e. wcel 1818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-cleq 2449 df-clel 2452 |
Copyright terms: Public domain | W3C validator |