![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > clim | Unicode version |
Description: Express the predicate: The limit of complex number sequence is , or converges to . This means that for any real , no matter how small, there always exists an integer such that the absolute difference of any later complex number in the sequence and the limit is less than . (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
clim.1 | |
clim.3 |
Ref | Expression |
---|---|
clim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climrel 13315 | . . . . 5 | |
2 | 1 | brrelex2i 5046 | . . . 4 |
3 | 2 | a1i 11 | . . 3 |
4 | elex 3118 | . . . . 5 | |
5 | 4 | adantr 465 | . . . 4 |
6 | 5 | a1i 11 | . . 3 |
7 | clim.1 | . . . 4 | |
8 | simpr 461 | . . . . . . . 8 | |
9 | 8 | eleq1d 2526 | . . . . . . 7 |
10 | fveq1 5870 | . . . . . . . . . . . . 13 | |
11 | 10 | adantr 465 | . . . . . . . . . . . 12 |
12 | 11 | eleq1d 2526 | . . . . . . . . . . 11 |
13 | oveq12 6305 | . . . . . . . . . . . . . 14 | |
14 | 10, 13 | sylan 471 | . . . . . . . . . . . . 13 |
15 | 14 | fveq2d 5875 | . . . . . . . . . . . 12 |
16 | 15 | breq1d 4462 | . . . . . . . . . . 11 |
17 | 12, 16 | anbi12d 710 | . . . . . . . . . 10 |
18 | 17 | ralbidv 2896 | . . . . . . . . 9 |
19 | 18 | rexbidv 2968 | . . . . . . . 8 |
20 | 19 | ralbidv 2896 | . . . . . . 7 |
21 | 9, 20 | anbi12d 710 | . . . . . 6 |
22 | df-clim 13311 | . . . . . 6 | |
23 | 21, 22 | brabga 4766 | . . . . 5 |
24 | 23 | ex 434 | . . . 4 |
25 | 7, 24 | syl 16 | . . 3 |
26 | 3, 6, 25 | pm5.21ndd 354 | . 2 |
27 | eluzelz 11119 | . . . . . . 7 | |
28 | clim.3 | . . . . . . . . 9 | |
29 | 28 | eleq1d 2526 | . . . . . . . 8 |
30 | 28 | oveq1d 6311 | . . . . . . . . . 10 |
31 | 30 | fveq2d 5875 | . . . . . . . . 9 |
32 | 31 | breq1d 4462 | . . . . . . . 8 |
33 | 29, 32 | anbi12d 710 | . . . . . . 7 |
34 | 27, 33 | sylan2 474 | . . . . . 6 |
35 | 34 | ralbidva 2893 | . . . . 5 |
36 | 35 | rexbidv 2968 | . . . 4 |
37 | 36 | ralbidv 2896 | . . 3 |
38 | 37 | anbi2d 703 | . 2 |
39 | 26, 38 | bitrd 253 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 E. wrex 2808 cvv 3109
class class class wbr 4452 ` cfv 5593
(class class class)co 6296 cc 9511 clt 9649 cmin 9828 cz 10889 cuz 11110
crp 11249
cabs 13067 cli 13307 |
This theorem is referenced by: climcl 13322 clim2 13327 climshftlem 13397 climsuse 31614 ioodvbdlimc1lem2 31729 ioodvbdlimc2lem 31731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-cnex 9569 ax-resscn 9570 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 df-ov 6299 df-neg 9831 df-z 10890 df-uz 11111 df-clim 13311 |
Copyright terms: Public domain | W3C validator |