Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  climeq Unicode version

Theorem climeq 13390
 Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climeq.1
climeq.2
climeq.3
climeq.5
climeq.6
Assertion
Ref Expression
climeq
Distinct variable groups:   ,   ,   ,   ,   ,

Proof of Theorem climeq
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climeq.1 . . 3
2 climeq.5 . . 3
3 climeq.2 . . 3
4 climeq.6 . . 3
51, 2, 3, 4clim2 13327 . 2
6 climeq.3 . . 3
7 eqidd 2458 . . 3
81, 2, 6, 7clim2 13327 . 2
95, 8bitr4d 256 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  /\wa 369  =wceq 1395  e.wcel 1818  A.wral 2807  E.wrex 2808   class class class wbr 4452  `cfv 5593  (class class class)co 6296   cc 9511   clt 9649   cmin 9828   cz 10889   cuz 11110   crp 11249   cabs 13067   cli 13307 This theorem is referenced by:  climmpt  13394  climres  13398  climshft  13399  climshft2  13405  isumclim3  13574  iprodclim3  13793  logtayl  23041  dfef2  23300  climexp  31611  stirlinglem14  31869  fourierdlem112  32001 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592  ax-cnex 9569  ax-resscn 9570  ax-pre-lttri 9587  ax-pre-lttrn 9588 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-po 4805  df-so 4806  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-ov 6299  df-er 7330  df-en 7537  df-dom 7538  df-sdom 7539  df-pnf 9651  df-mnf 9652  df-xr 9653  df-ltxr 9654  df-le 9655  df-neg 9831  df-z 10890  df-uz 11111  df-clim 13311
 Copyright terms: Public domain W3C validator