MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climrel Unicode version

Theorem climrel 13315
Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climrel

Proof of Theorem climrel
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-clim 13311 . 2
21relopabi 5133 1
Colors of variables: wff setvar class
Syntax hints:  /\wa 369  e.wcel 1818  A.wral 2807  E.wrex 2808   class class class wbr 4452  Relwrel 5009  `cfv 5593  (class class class)co 6296   cc 9511   clt 9649   cmin 9828   cz 10889   cuz 11110   crp 11249   cabs 13067   cli 13307
This theorem is referenced by:  clim  13317  climcl  13322  climi  13333  climrlim2  13370  fclim  13376  climrecl  13406  climge0  13407  iserex  13479  caurcvg2  13500  caucvg  13501  iseralt  13507  fsumcvg3  13551  cvgcmpce  13632  climfsum  13634  climcnds  13663  trirecip  13674  ntrivcvgn0  13707  ovoliunlem1  21913  mbflimlem  22074  abelthlem5  22830  emcllem6  23330  lgamgulmlem4  28574  binomcxplemnn0  31254  binomcxplemnotnn0  31261  climf  31628  sumnnodd  31636  ioodvbdlimc1lem2  31729  ioodvbdlimc2lem  31731  stirlinglem12  31867  fouriersw  32014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-opab 4511  df-xp 5010  df-rel 5011  df-clim 13311
  Copyright terms: Public domain W3C validator