![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > climsqz2 | Unicode version |
Description: Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 14-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.) |
Ref | Expression |
---|---|
climadd.1 | |
climadd.2 | |
climadd.4 | |
climsqz.5 | |
climsqz.6 | |
climsqz.7 | |
climsqz2.8 | |
climsqz2.9 |
Ref | Expression |
---|---|
climsqz2 |
M
,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climadd.1 | . . . . 5 | |
2 | climadd.2 | . . . . . 6 | |
3 | 2 | adantr 465 | . . . . 5 |
4 | simpr 461 | . . . . 5 | |
5 | eqidd 2458 | . . . . 5 | |
6 | climadd.4 | . . . . . 6 | |
7 | 6 | adantr 465 | . . . . 5 |
8 | 1, 3, 4, 5, 7 | climi2 13334 | . . . 4 |
9 | 1 | uztrn2 11127 | . . . . . . . 8 |
10 | climsqz.7 | . . . . . . . . . . . 12 | |
11 | climsqz.6 | . . . . . . . . . . . 12 | |
12 | 1, 2, 6, 11 | climrecl 13406 | . . . . . . . . . . . . 13 |
13 | 12 | adantr 465 | . . . . . . . . . . . 12 |
14 | climsqz2.8 | . . . . . . . . . . . 12 | |
15 | 10, 11, 13, 14 | lesub1dd 10193 | . . . . . . . . . . 11 |
16 | climsqz2.9 | . . . . . . . . . . . 12 | |
17 | 13, 10, 16 | abssubge0d 13263 | . . . . . . . . . . 11 |
18 | 13, 10, 11, 16, 14 | letrd 9760 | . . . . . . . . . . . 12 |
19 | 13, 11, 18 | abssubge0d 13263 | . . . . . . . . . . 11 |
20 | 15, 17, 19 | 3brtr4d 4482 | . . . . . . . . . 10 |
21 | 20 | adantlr 714 | . . . . . . . . 9 |
22 | 10 | adantlr 714 | . . . . . . . . . . . . 13 |
23 | 12 | ad2antrr 725 | . . . . . . . . . . . . 13 |
24 | 22, 23 | resubcld 10012 | . . . . . . . . . . . 12 |
25 | 24 | recnd 9643 | . . . . . . . . . . 11 |
26 | 25 | abscld 13267 | . . . . . . . . . 10 |
27 | 11 | adantlr 714 | . . . . . . . . . . . . 13 |
28 | 27, 23 | resubcld 10012 | . . . . . . . . . . . 12 |
29 | 28 | recnd 9643 | . . . . . . . . . . 11 |
30 | 29 | abscld 13267 | . . . . . . . . . 10 |
31 | rpre 11255 | . . . . . . . . . . 11 | |
32 | 31 | ad2antlr 726 | . . . . . . . . . 10 |
33 | lelttr 9696 | . . . . . . . . . 10 | |
34 | 26, 30, 32, 33 | syl3anc 1228 | . . . . . . . . 9 |
35 | 21, 34 | mpand 675 | . . . . . . . 8 |
36 | 9, 35 | sylan2 474 | . . . . . . 7 |
37 | 36 | anassrs 648 | . . . . . 6 |
38 | 37 | ralimdva 2865 | . . . . 5 |
39 | 38 | reximdva 2932 | . . . 4 |
40 | 8, 39 | mpd 15 | . . 3 |
41 | 40 | ralrimiva 2871 | . 2 |
42 | climsqz.5 | . . 3 | |
43 | eqidd 2458 | . . 3 | |
44 | 12 | recnd 9643 | . . 3 |
45 | 10 | recnd 9643 | . . 3 |
46 | 1, 2, 42, 43, 44, 45 | clim2c 13328 | . 2 |
47 | 41, 46 | mpbird 232 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 A. wral 2807
E. wrex 2808 class class class wbr 4452
` cfv 5593 (class class class)co 6296
cr 9512 clt 9649 cle 9650 cmin 9828 cz 10889 cuz 11110
crp 11249
cabs 13067 cli 13307 |
This theorem is referenced by: expcnv 13675 explecnv 13676 plyeq0lem 22607 leibpi 23273 emcllem4 23328 basellem6 23359 basellem9 23362 lgamcvg2 28597 wallispilem5 31851 stirlinglem1 31856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-pm 7442 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fl 11929 df-seq 12108 df-exp 12167 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-clim 13311 df-rlim 13312 |
Copyright terms: Public domain | W3C validator |