![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cnegex | Unicode version |
Description: Existence of the negative of a complex number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
cnegex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 9613 | . 2 | |
2 | ax-rnegex 9584 | . . . . . . 7 | |
3 | ax-rnegex 9584 | . . . . . . 7 | |
4 | 2, 3 | anim12i 566 | . . . . . 6 |
5 | reeanv 3025 | . . . . . 6 | |
6 | 4, 5 | sylibr 212 | . . . . 5 |
7 | ax-icn 9572 | . . . . . . . . . . 11 | |
8 | 7 | a1i 11 | . . . . . . . . . 10 |
9 | simplrr 762 | . . . . . . . . . . 11 | |
10 | 9 | recnd 9643 | . . . . . . . . . 10 |
11 | 8, 10 | mulcld 9637 | . . . . . . . . 9 |
12 | simplrl 761 | . . . . . . . . . 10 | |
13 | 12 | recnd 9643 | . . . . . . . . 9 |
14 | 11, 13 | addcld 9636 | . . . . . . . 8 |
15 | simplll 759 | . . . . . . . . . . . . . 14 | |
16 | 15 | recnd 9643 | . . . . . . . . . . . . 13 |
17 | simpllr 760 | . . . . . . . . . . . . . . 15 | |
18 | 17 | recnd 9643 | . . . . . . . . . . . . . 14 |
19 | 8, 18 | mulcld 9637 | . . . . . . . . . . . . 13 |
20 | 16, 19, 11 | addassd 9639 | . . . . . . . . . . . 12 |
21 | 8, 18, 10 | adddid 9641 | . . . . . . . . . . . . . 14 |
22 | simprr 757 | . . . . . . . . . . . . . . . 16 | |
23 | 22 | oveq2d 6312 | . . . . . . . . . . . . . . 15 |
24 | mul01 9780 | . . . . . . . . . . . . . . . 16 | |
25 | 7, 24 | ax-mp 5 | . . . . . . . . . . . . . . 15 |
26 | 23, 25 | syl6eq 2514 | . . . . . . . . . . . . . 14 |
27 | 21, 26 | eqtr3d 2500 | . . . . . . . . . . . . 13 |
28 | 27 | oveq2d 6312 | . . . . . . . . . . . 12 |
29 | addid1 9781 | . . . . . . . . . . . . 13 | |
30 | 16, 29 | syl 16 | . . . . . . . . . . . 12 |
31 | 20, 28, 30 | 3eqtrd 2502 | . . . . . . . . . . 11 |
32 | 31 | oveq1d 6311 | . . . . . . . . . 10 |
33 | 16, 19 | addcld 9636 | . . . . . . . . . . 11 |
34 | 33, 11, 13 | addassd 9639 | . . . . . . . . . 10 |
35 | 32, 34 | eqtr3d 2500 | . . . . . . . . 9 |
36 | simprl 756 | . . . . . . . . 9 | |
37 | 35, 36 | eqtr3d 2500 | . . . . . . . 8 |
38 | oveq2 6304 | . . . . . . . . . 10 | |
39 | 38 | eqeq1d 2459 | . . . . . . . . 9 |
40 | 39 | rspcev 3210 | . . . . . . . 8 |
41 | 14, 37, 40 | syl2anc 661 | . . . . . . 7 |
42 | 41 | ex 434 | . . . . . 6 |
43 | 42 | rexlimdvva 2956 | . . . . 5 |
44 | 6, 43 | mpd 15 | . . . 4 |
45 | oveq1 6303 | . . . . . 6 | |
46 | 45 | eqeq1d 2459 | . . . . 5 |
47 | 46 | rexbidv 2968 | . . . 4 |
48 | 44, 47 | syl5ibrcom 222 | . . 3 |
49 | 48 | rexlimivv 2954 | . 2 |
50 | 1, 49 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 E. wrex 2808
(class class class)co 6296 cc 9511 cr 9512 0 cc0 9513 ci 9515
caddc 9516 cmul 9518 |
This theorem is referenced by: addid2 9784 addcan2 9786 0cnALT 9832 negeu 9833 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-ltxr 9654 |
Copyright terms: Public domain | W3C validator |