![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cnfcom3clem | Unicode version |
Description: Lemma for cnfcom3c 8171. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 4-Jul-2019.) |
Ref | Expression |
---|---|
cnfcom3c.s | |
cnfcom3c.f | |
cnfcom3c.g | |
cnfcom3c.h | |
cnfcom3c.t | |
cnfcom3c.m | |
cnfcom3c.k | |
cnfcom3c.w | |
cnfcom3c.x | |
cnfcom3c.y | |
cnfcom3c.n | |
cnfcom3c.l |
Ref | Expression |
---|---|
cnfcom3clem |
M
,,, ,,,,,, ,,,,,, ,,,, S
,, ,,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfcom3c.s | . . . . . 6 | |
2 | simp1 996 | . . . . . 6 | |
3 | omelon 8084 | . . . . . . . . 9 | |
4 | 1onn 7307 | . . . . . . . . 9 | |
5 | ondif2 7171 | . . . . . . . . 9 | |
6 | 3, 4, 5 | mpbir2an 920 | . . . . . . . 8 |
7 | oeworde 7261 | . . . . . . . 8 | |
8 | 6, 2, 7 | sylancr 663 | . . . . . . 7 |
9 | simp2 997 | . . . . . . 7 | |
10 | 8, 9 | sseldd 3504 | . . . . . 6 |
11 | cnfcom3c.f | . . . . . 6 | |
12 | cnfcom3c.g | . . . . . 6 | |
13 | cnfcom3c.h | . . . . . 6 | |
14 | cnfcom3c.t | . . . . . 6 | |
15 | cnfcom3c.m | . . . . . 6 | |
16 | cnfcom3c.k | . . . . . 6 | |
17 | cnfcom3c.w | . . . . . 6 | |
18 | simp3 998 | . . . . . 6 | |
19 | 1, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18 | cnfcom3lem 8168 | . . . . 5 |
20 | cnfcom3c.x | . . . . . . 7 | |
21 | cnfcom3c.y | . . . . . . 7 | |
22 | cnfcom3c.n | . . . . . . 7 | |
23 | 1, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22 | cnfcom3 8169 | . . . . . 6 |
24 | f1of 5821 | . . . . . . . . . 10 | |
25 | 23, 24 | syl 16 | . . . . . . . . 9 |
26 | vex 3112 | . . . . . . . . 9 | |
27 | fex 6145 | . . . . . . . . 9 | |
28 | 25, 26, 27 | sylancl 662 | . . . . . . . 8 |
29 | cnfcom3c.l | . . . . . . . . 9 | |
30 | 29 | fvmpt2 5963 | . . . . . . . 8 |
31 | 10, 28, 30 | syl2anc 661 | . . . . . . 7 |
32 | f1oeq1 5812 | . . . . . . 7 | |
33 | 31, 32 | syl 16 | . . . . . 6 |
34 | 23, 33 | mpbird 232 | . . . . 5 |
35 | oveq2 6304 | . . . . . . 7 | |
36 | f1oeq3 5814 | . . . . . . 7 | |
37 | 35, 36 | syl 16 | . . . . . 6 |
38 | 37 | rspcev 3210 | . . . . 5 |
39 | 19, 34, 38 | syl2anc 661 | . . . 4 |
40 | 39 | 3expia 1198 | . . 3 |
41 | 40 | ralrimiva 2871 | . 2 |
42 | ovex 6324 | . . . . 5 | |
43 | 42 | mptex 6143 | . . . 4 |
44 | 29, 43 | eqeltri 2541 | . . 3 |
45 | nfmpt1 4541 | . . . . . 6 | |
46 | 29, 45 | nfcxfr 2617 | . . . . 5 |
47 | 46 | nfeq2 2636 | . . . 4 |
48 | fveq1 5870 | . . . . . . 7 | |
49 | f1oeq1 5812 | . . . . . . 7 | |
50 | 48, 49 | syl 16 | . . . . . 6 |
51 | 50 | rexbidv 2968 | . . . . 5 |
52 | 51 | imbi2d 316 | . . . 4 |
53 | 47, 52 | ralbid 2891 | . . 3 |
54 | 44, 53 | spcev 3201 | . 2 |
55 | 41, 54 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ w3a 973 = wceq 1395 E. wex 1612
e. wcel 1818 A. wral 2807 E. wrex 2808
cvv 3109
\ cdif 3472 u. cun 3473 C_ wss 3475
c0 3784 U. cuni 4249 e. cmpt 4510
cep 4794
con0 4883 `' ccnv 5003 dom cdm 5004
o. ccom 5008 --> wf 5589 -1-1-onto-> wf1o 5592 ` cfv 5593 (class class class)co 6296
e. cmpt2 6298 com 6700
csupp 6918 seqom cseqom 7131 c1o 7142
c2o 7143
coa 7146
comu 7147
coe 7148
OrdIso coi 7955
ccnf 8099 |
This theorem is referenced by: cnfcom3c 8171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-supp 6919 df-recs 7061 df-rdg 7095 df-seqom 7132 df-1o 7149 df-2o 7150 df-oadd 7153 df-omul 7154 df-oexp 7155 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-fsupp 7850 df-oi 7956 df-cnf 8100 |
Copyright terms: Public domain | W3C validator |