![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cnfcom3clemOLD | Unicode version |
Description: Lemma for cnfcom3cOLD 8179. (Contributed by Mario Carneiro, 30-May-2015.) Obsolete version of cnfcom3clem 8170 as of 4-Jul-2019. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
cnfcom3cOLD.s | |
cnfcom3cOLD.f | |
cnfcom3cOLD.g | |
cnfcom3cOLD.h | |
cnfcom3cOLD.t | |
cnfcom3cOLD.m | |
cnfcom3cOLD.k | |
cnfcom3cOLD.w | |
cnfcom3cOLD.x | |
cnfcom3cOLD.y | |
cnfcom3cOLD.n | |
cnfcom3cOLD.l |
Ref | Expression |
---|---|
cnfcom3clemOLD |
M
,,, ,,,,,, ,,,,,, ,,,, S
,, ,,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfcom3cOLD.s | . . . . . 6 | |
2 | simp1 996 | . . . . . 6 | |
3 | omelon 8084 | . . . . . . . . 9 | |
4 | 1onn 7307 | . . . . . . . . 9 | |
5 | ondif2 7171 | . . . . . . . . 9 | |
6 | 3, 4, 5 | mpbir2an 920 | . . . . . . . 8 |
7 | oeworde 7261 | . . . . . . . 8 | |
8 | 6, 2, 7 | sylancr 663 | . . . . . . 7 |
9 | simp2 997 | . . . . . . 7 | |
10 | 8, 9 | sseldd 3504 | . . . . . 6 |
11 | cnfcom3cOLD.f | . . . . . 6 | |
12 | cnfcom3cOLD.g | . . . . . 6 | |
13 | cnfcom3cOLD.h | . . . . . 6 | |
14 | cnfcom3cOLD.t | . . . . . 6 | |
15 | cnfcom3cOLD.m | . . . . . 6 | |
16 | cnfcom3cOLD.k | . . . . . 6 | |
17 | cnfcom3cOLD.w | . . . . . 6 | |
18 | simp3 998 | . . . . . 6 | |
19 | 1, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18 | cnfcom3lemOLD 8176 | . . . . 5 |
20 | cnfcom3cOLD.x | . . . . . . 7 | |
21 | cnfcom3cOLD.y | . . . . . . 7 | |
22 | cnfcom3cOLD.n | . . . . . . 7 | |
23 | 1, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22 | cnfcom3OLD 8177 | . . . . . 6 |
24 | f1of 5821 | . . . . . . . . . 10 | |
25 | 23, 24 | syl 16 | . . . . . . . . 9 |
26 | vex 3112 | . . . . . . . . 9 | |
27 | fex 6145 | . . . . . . . . 9 | |
28 | 25, 26, 27 | sylancl 662 | . . . . . . . 8 |
29 | cnfcom3cOLD.l | . . . . . . . . 9 | |
30 | 29 | fvmpt2 5963 | . . . . . . . 8 |
31 | 10, 28, 30 | syl2anc 661 | . . . . . . 7 |
32 | f1oeq1 5812 | . . . . . . 7 | |
33 | 31, 32 | syl 16 | . . . . . 6 |
34 | 23, 33 | mpbird 232 | . . . . 5 |
35 | oveq2 6304 | . . . . . . 7 | |
36 | f1oeq3 5814 | . . . . . . 7 | |
37 | 35, 36 | syl 16 | . . . . . 6 |
38 | 37 | rspcev 3210 | . . . . 5 |
39 | 19, 34, 38 | syl2anc 661 | . . . 4 |
40 | 39 | 3expia 1198 | . . 3 |
41 | 40 | ralrimiva 2871 | . 2 |
42 | ovex 6324 | . . . . 5 | |
43 | 42 | mptex 6143 | . . . 4 |
44 | 29, 43 | eqeltri 2541 | . . 3 |
45 | nfmpt1 4541 | . . . . . 6 | |
46 | 29, 45 | nfcxfr 2617 | . . . . 5 |
47 | 46 | nfeq2 2636 | . . . 4 |
48 | fveq1 5870 | . . . . . . 7 | |
49 | f1oeq1 5812 | . . . . . . 7 | |
50 | 48, 49 | syl 16 | . . . . . 6 |
51 | 50 | rexbidv 2968 | . . . . 5 |
52 | 51 | imbi2d 316 | . . . 4 |
53 | 47, 52 | ralbid 2891 | . . 3 |
54 | 44, 53 | spcev 3201 | . 2 |
55 | 41, 54 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ w3a 973 = wceq 1395 E. wex 1612
e. wcel 1818 A. wral 2807 E. wrex 2808
cvv 3109
\ cdif 3472 u. cun 3473 C_ wss 3475
c0 3784 U. cuni 4249 e. cmpt 4510
cep 4794
con0 4883 `' ccnv 5003 dom cdm 5004
" cima 5007 o. ccom 5008 --> wf 5589
-1-1-onto-> wf1o 5592
` cfv 5593 (class class class)co 6296
e. cmpt2 6298 com 6700
seqom cseqom 7131 c1o 7142
c2o 7143
coa 7146
comu 7147
coe 7148
OrdIso coi 7955
ccnf 8099 |
This theorem is referenced by: cnfcom3cOLD 8179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-supp 6919 df-recs 7061 df-rdg 7095 df-seqom 7132 df-1o 7149 df-2o 7150 df-oadd 7153 df-omul 7154 df-oexp 7155 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-fsupp 7850 df-oi 7956 df-cnf 8100 |
Copyright terms: Public domain | W3C validator |