![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cnvco | Unicode version |
Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvco |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1671 | . . . 4 | |
2 | vex 3112 | . . . . 5 | |
3 | vex 3112 | . . . . 5 | |
4 | 2, 3 | brco 5178 | . . . 4 |
5 | vex 3112 | . . . . . . 7 | |
6 | 3, 5 | brcnv 5190 | . . . . . 6 |
7 | 5, 2 | brcnv 5190 | . . . . . 6 |
8 | 6, 7 | anbi12i 697 | . . . . 5 |
9 | 8 | exbii 1667 | . . . 4 |
10 | 1, 4, 9 | 3bitr4i 277 | . . 3 |
11 | 10 | opabbii 4516 | . 2 |
12 | df-cnv 5012 | . 2 | |
13 | df-co 5013 | . 2 | |
14 | 11, 12, 13 | 3eqtr4i 2496 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 = wceq 1395
E. wex 1612 class class class wbr 4452
{ copab 4509 `' ccnv 5003
o. ccom 5008 |
This theorem is referenced by: rncoss 5268 rncoeq 5271 dmco 5520 cores2 5525 co01 5527 coi2 5529 relcnvtr 5532 dfdm2 5544 f1co 5795 cofunex2g 6765 fparlem3 6902 fparlem4 6903 supp0cosupp0 6958 imacosupp 6959 fsuppcolem 7880 mapfienOLD 8159 cnvps 15842 gimco 16316 gsumval3OLD 16908 gsumzf1o 16917 gsumzf1oOLD 16920 cnco 19767 ptrescn 20140 qtopcn 20215 hmeoco 20273 cncombf 22065 deg1val 22496 deg1valOLD 22497 fcoinver 27460 ofpreima 27507 mbfmco 28235 eulerpartlemmf 28314 cvmliftmolem1 28726 cvmlift2lem9a 28748 cvmlift2lem9 28756 mclsppslem 28943 relexpcnv 29056 ftc1anclem3 30092 trlcocnv 36446 tendoicl 36522 cdlemk45 36673 cnvtrrel 37782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-cnv 5012 df-co 5013 |
Copyright terms: Public domain | W3C validator |