MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvi Unicode version

Theorem cnvi 5415
Description: The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvi

Proof of Theorem cnvi
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3112 . . . . 5
21ideq 5160 . . . 4
3 equcom 1794 . . . 4
42, 3bitri 249 . . 3
54opabbii 4516 . 2
6 df-cnv 5012 . 2
7 df-id 4800 . 2
85, 6, 73eqtr4i 2496 1
Colors of variables: wff setvar class
Syntax hints:  =wceq 1395   class class class wbr 4452  {copab 4509   cid 4795  `'ccnv 5003
This theorem is referenced by:  coi2  5529  funi  5623  cnvresid  5663  fcoi1  5764  ssdomg  7581  mbfid  22043  mthmpps  28942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012
  Copyright terms: Public domain W3C validator