MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimadfsn Unicode version

Theorem cnvimadfsn 6927
Description: The support of functions "defined" by inverse images expressed by binary relations. (Contributed by AV, 7-Apr-2019.)
Assertion
Ref Expression
cnvimadfsn
Distinct variable groups:   , ,   , ,

Proof of Theorem cnvimadfsn
StepHypRef Expression
1 dfima3 5345 . 2
2 vex 3112 . . . . . 6
3 eldifvsn 4162 . . . . . 6
42, 3ax-mp 5 . . . . 5
5 vex 3112 . . . . . . 7
62, 5opelcnv 5189 . . . . . 6
7 df-br 4453 . . . . . 6
86, 7bitr4i 252 . . . . 5
94, 8anbi12ci 698 . . . 4
109exbii 1667 . . 3
1110abbii 2591 . 2
121, 11eqtri 2486 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  /\wa 369  =wceq 1395  E.wex 1612  e.wcel 1818  {cab 2442  =/=wne 2652   cvv 3109  \cdif 3472  {csn 4029  <.cop 4035   class class class wbr 4452  `'ccnv 5003  "cima 5007
This theorem is referenced by:  suppimacnvss  6928  suppimacnv  6929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-xp 5010  df-cnv 5012  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017
  Copyright terms: Public domain W3C validator