![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cnvsym | Unicode version |
Description: Two ways of saying a relation is symmetric. Similar to definition of symmetry in [Schechter] p. 51. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvsym |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom 1845 | . 2 | |
2 | relcnv 5379 | . . 3 | |
3 | ssrel 5096 | . . 3 | |
4 | 2, 3 | ax-mp 5 | . 2 |
5 | vex 3112 | . . . . . 6 | |
6 | vex 3112 | . . . . . 6 | |
7 | 5, 6 | brcnv 5190 | . . . . 5 |
8 | df-br 4453 | . . . . 5 | |
9 | 7, 8 | bitr3i 251 | . . . 4 |
10 | df-br 4453 | . . . 4 | |
11 | 9, 10 | imbi12i 326 | . . 3 |
12 | 11 | 2albii 1641 | . 2 |
13 | 1, 4, 12 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 e. wcel 1818 C_ wss 3475
<. cop 4035 class class class wbr 4452
`' ccnv 5003 Rel wrel 5009 |
This theorem is referenced by: dfer2 7331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-cnv 5012 |
Copyright terms: Public domain | W3C validator |