![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cnvun | Unicode version |
Description: The converse of a union is the union of converses. Theorem 16 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 5012 | . . 3 | |
2 | unopab 4527 | . . . 4 | |
3 | brun 4500 | . . . . 5 | |
4 | 3 | opabbii 4516 | . . . 4 |
5 | 2, 4 | eqtr4i 2489 | . . 3 |
6 | 1, 5 | eqtr4i 2489 | . 2 |
7 | df-cnv 5012 | . . 3 | |
8 | df-cnv 5012 | . . 3 | |
9 | 7, 8 | uneq12i 3655 | . 2 |
10 | 6, 9 | eqtr4i 2489 | 1 |
Colors of variables: wff setvar class |
Syntax hints: \/ wo 368 = wceq 1395
u. cun 3473 class class class wbr 4452
{ copab 4509 `' ccnv 5003 |
This theorem is referenced by: rnun 5419 f1oun 5840 f1oprswap 5860 suppun 6939 sbthlem8 7654 domss2 7696 1sdom 7742 fsuppun 7868 fpwwe2lem13 9041 strlemor1 14724 xpsc 14954 gsumzaddlemOLD 16936 funsnfsupOLD 18256 mbfres2 22052 constr2spthlem1 24596 constr3pthlem2 24656 ex-cnv 25158 eulerpartlemt 28310 mthmpps 28942 trclubg 37785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-un 3480 df-br 4453 df-opab 4511 df-cnv 5012 |
Copyright terms: Public domain | W3C validator |