Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvun Unicode version

Theorem cnvun 5416
 Description: The converse of a union is the union of converses. Theorem 16 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvun

Proof of Theorem cnvun
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnv 5012 . . 3
2 unopab 4527 . . . 4
3 brun 4500 . . . . 5
43opabbii 4516 . . . 4
52, 4eqtr4i 2489 . . 3
61, 5eqtr4i 2489 . 2
7 df-cnv 5012 . . 3
8 df-cnv 5012 . . 3
97, 8uneq12i 3655 . 2
106, 9eqtr4i 2489 1
 Colors of variables: wff setvar class Syntax hints:  \/wo 368  =wceq 1395  u.cun 3473   class class class wbr 4452  {copab 4509  '`ccnv 5003 This theorem is referenced by:  rnun  5419  f1oun  5840  f1oprswap  5860  suppun  6939  sbthlem8  7654  domss2  7696  1sdom  7742  fsuppun  7868  fpwwe2lem13  9041  strlemor1  14724  xpsc  14954  gsumzaddlemOLD  16936  funsnfsupOLD  18256  mbfres2  22052  constr2spthlem1  24596  constr3pthlem2  24656  ex-cnv  25158  eulerpartlemt  28310  mthmpps  28942  trclubg  37785 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-un 3480  df-br 4453  df-opab 4511  df-cnv 5012
 Copyright terms: Public domain W3C validator