MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvuni Unicode version

Theorem cnvuni 5194
Description: The converse of a class union is the (indexed) union of the converses of its members. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
cnvuni
Distinct variable group:   ,

Proof of Theorem cnvuni
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elcnv2 5185 . . . 4
2 eluni2 4253 . . . . . . 7
32anbi2i 694 . . . . . 6
4 r19.42v 3012 . . . . . 6
53, 4bitr4i 252 . . . . 5
652exbii 1668 . . . 4
7 elcnv2 5185 . . . . . 6
87rexbii 2959 . . . . 5
9 rexcom4 3129 . . . . 5
10 rexcom4 3129 . . . . . 6
1110exbii 1667 . . . . 5
128, 9, 113bitrri 272 . . . 4
131, 6, 123bitri 271 . . 3
14 eliun 4335 . . 3
1513, 14bitr4i 252 . 2
1615eqriv 2453 1
Colors of variables: wff setvar class
Syntax hints:  /\wa 369  =wceq 1395  E.wex 1612  e.wcel 1818  E.wrex 2808  <.cop 4035  U.cuni 4249  U_ciun 4330  `'ccnv 5003
This theorem is referenced by:  funcnvuni  6753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-iun 4332  df-br 4453  df-opab 4511  df-cnv 5012
  Copyright terms: Public domain W3C validator