![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > coass | Unicode version |
Description: Associative law for class composition. Theorem 27 of [Suppes] p. 64. Also Exercise 21 of [Enderton] p. 53. Interestingly, this law holds for any classes whatsoever, not just functions or even relations. (Contributed by NM, 27-Jan-1997.) |
Ref | Expression |
---|---|
coass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 5510 | . 2 | |
2 | relco 5510 | . 2 | |
3 | excom 1849 | . . . 4 | |
4 | anass 649 | . . . . 5 | |
5 | 4 | 2exbii 1668 | . . . 4 |
6 | 3, 5 | bitr4i 252 | . . 3 |
7 | vex 3112 | . . . . . . 7 | |
8 | vex 3112 | . . . . . . 7 | |
9 | 7, 8 | brco 5178 | . . . . . 6 |
10 | 9 | anbi2i 694 | . . . . 5 |
11 | 10 | exbii 1667 | . . . 4 |
12 | vex 3112 | . . . . 5 | |
13 | 12, 8 | opelco 5179 | . . . 4 |
14 | exdistr 1776 | . . . 4 | |
15 | 11, 13, 14 | 3bitr4i 277 | . . 3 |
16 | vex 3112 | . . . . . . 7 | |
17 | 12, 16 | brco 5178 | . . . . . 6 |
18 | 17 | anbi1i 695 | . . . . 5 |
19 | 18 | exbii 1667 | . . . 4 |
20 | 12, 8 | opelco 5179 | . . . 4 |
21 | 19.41v 1771 | . . . . 5 | |
22 | 21 | exbii 1667 | . . . 4 |
23 | 19, 20, 22 | 3bitr4i 277 | . . 3 |
24 | 6, 15, 23 | 3bitr4i 277 | . 2 |
25 | 1, 2, 24 | eqrelriiv 5102 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 = wceq 1395
E. wex 1612 e. wcel 1818 <. cop 4035
class class class wbr 4452 o. ccom 5008 |
This theorem is referenced by: funcoeqres 5851 fcof1oinvd 6196 tposco 7005 mapen 7701 mapfien 7887 mapfienOLD 8159 hashfacen 12503 cofuass 15258 setccatid 15411 frmdup3lem 16034 symggrp 16425 f1omvdco2 16473 symggen 16495 psgnunilem1 16518 gsumval3OLD 16908 gsumval3 16911 gsumzf1o 16917 gsumzf1oOLD 16920 gsumzmhm 16957 gsumzmhmOLD 16958 prds1 17263 psrass1lem 18029 pf1mpf 18388 pf1ind 18391 qtophmeo 20318 uniioombllem2 21992 cncombf 22065 motgrp 23930 pjsdi2i 27076 pjadj2coi 27123 pj3lem1 27125 pj3i 27127 fcoinver 27460 fcobij 27548 fcobijfs 27549 derangenlem 28615 subfacp1lem5 28628 erdsze2lem2 28648 relexpsucl 29055 relexpadd 29061 pprodcnveq 29533 cocnv 30216 diophrw 30692 eldioph2 30695 mendring 31141 estrccatid 32638 rngccatidOLD 32797 ringccatidOLD 32860 ltrncoidN 35852 trlcoabs2N 36448 trlcoat 36449 trlcone 36454 cdlemg46 36461 cdlemg47 36462 ltrnco4 36465 tgrpgrplem 36475 tendoplass 36509 cdlemi2 36545 cdlemk2 36558 cdlemk4 36560 cdlemk8 36564 cdlemk45 36673 cdlemk54 36684 cdlemk55a 36685 erngdvlem3 36716 erngdvlem3-rN 36724 tendocnv 36748 dvhvaddass 36824 dvhlveclem 36835 cdlemn8 36931 dihopelvalcpre 36975 dih1dimatlem0 37055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-co 5013 |
Copyright terms: Public domain | W3C validator |