![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cocan1 | Unicode version |
Description: An injection is left-cancelable. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
cocan1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvco3 5950 | . . . . . 6 | |
2 | 1 | 3ad2antl2 1159 | . . . . 5 |
3 | fvco3 5950 | . . . . . 6 | |
4 | 3 | 3ad2antl3 1160 | . . . . 5 |
5 | 2, 4 | eqeq12d 2479 | . . . 4 |
6 | simpl1 999 | . . . . 5 | |
7 | ffvelrn 6029 | . . . . . 6 | |
8 | 7 | 3ad2antl2 1159 | . . . . 5 |
9 | ffvelrn 6029 | . . . . . 6 | |
10 | 9 | 3ad2antl3 1160 | . . . . 5 |
11 | f1fveq 6170 | . . . . 5 | |
12 | 6, 8, 10, 11 | syl12anc 1226 | . . . 4 |
13 | 5, 12 | bitrd 253 | . . 3 |
14 | 13 | ralbidva 2893 | . 2 |
15 | f1f 5786 | . . . . . 6 | |
16 | 15 | 3ad2ant1 1017 | . . . . 5 |
17 | ffn 5736 | . . . . 5 | |
18 | 16, 17 | syl 16 | . . . 4 |
19 | simp2 997 | . . . 4 | |
20 | fnfco 5755 | . . . 4 | |
21 | 18, 19, 20 | syl2anc 661 | . . 3 |
22 | simp3 998 | . . . 4 | |
23 | fnfco 5755 | . . . 4 | |
24 | 18, 22, 23 | syl2anc 661 | . . 3 |
25 | eqfnfv 5981 | . . 3 | |
26 | 21, 24, 25 | syl2anc 661 | . 2 |
27 | ffn 5736 | . . . 4 | |
28 | 19, 27 | syl 16 | . . 3 |
29 | ffn 5736 | . . . 4 | |
30 | 22, 29 | syl 16 | . . 3 |
31 | eqfnfv 5981 | . . 3 | |
32 | 28, 30, 31 | syl2anc 661 | . 2 |
33 | 14, 26, 32 | 3bitr4d 285 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 A. wral 2807 o. ccom 5008
Fn wfn 5588 --> wf 5589 -1-1-> wf1 5590 ` cfv 5593 |
This theorem is referenced by: mapen 7701 mapfien 7887 mapfienOLD 8159 hashfacen 12503 setcmon 15414 derangenlem 28615 subfacp1lem5 28628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fv 5601 |
Copyright terms: Public domain | W3C validator |