Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeq12i Unicode version

Theorem coeq12i 5171
 Description: Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.)
Hypotheses
Ref Expression
coeq12i.1
coeq12i.2
Assertion
Ref Expression
coeq12i

Proof of Theorem coeq12i
StepHypRef Expression
1 coeq12i.1 . . 3
21coeq1i 5167 . 2
3 coeq12i.2 . . 3
43coeq2i 5168 . 2
52, 4eqtri 2486 1
 Colors of variables: wff setvar class Syntax hints:  =wceq 1395  o.ccom 5008 This theorem is referenced by:  madetsumid  18963  mdetleib2  19090  imsval  25591  pjcmul1i  27120 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-in 3482  df-ss 3489  df-br 4453  df-opab 4511  df-co 5013
 Copyright terms: Public domain W3C validator