MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeq1i Unicode version

Theorem coeq1i 5167
Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.)
Hypothesis
Ref Expression
coeq1i.1
Assertion
Ref Expression
coeq1i

Proof of Theorem coeq1i
StepHypRef Expression
1 coeq1i.1 . 2
2 coeq1 5165 . 2
31, 2ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  =wceq 1395  o.ccom 5008
This theorem is referenced by:  coeq12i  5171  cocnvcnv1  5523  hashgval  12408  imasdsval2  14913  prds1  17263  pf1mpf  18388  upxp  20124  uptx  20126  hoico2  26676  hoid1ri  26709  nmopcoadj2i  27021  pjclem3  27116  erdsze2lem2  28648  pprodcnveq  29533  dvsinax  31708  diblss  36897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-in 3482  df-ss 3489  df-br 4453  df-opab 4511  df-co 5013
  Copyright terms: Public domain W3C validator