![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > coflim | Unicode version |
Description: A simpler expression for the cofinality predicate, at a limit ordinal. (Contributed by Mario Carneiro, 28-Feb-2013.) |
Ref | Expression |
---|---|
coflim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2530 | . . . . 5 | |
2 | 1 | biimprd 223 | . . . 4 |
3 | eluni2 4253 | . . . . 5 | |
4 | limord 4942 | . . . . . . . . 9 | |
5 | ssel2 3498 | . . . . . . . . 9 | |
6 | ordelon 4907 | . . . . . . . . 9 | |
7 | 4, 5, 6 | syl2an 477 | . . . . . . . 8 |
8 | 7 | expr 615 | . . . . . . 7 |
9 | onelss 4925 | . . . . . . 7 | |
10 | 8, 9 | syl6 33 | . . . . . 6 |
11 | 10 | reximdvai 2929 | . . . . 5 |
12 | 3, 11 | syl5bi 217 | . . . 4 |
13 | 2, 12 | syl9r 72 | . . 3 |
14 | 13 | ralrimdv 2873 | . 2 |
15 | uniss 4270 | . . . . . 6 | |
16 | 15 | 3ad2ant2 1018 | . . . . 5 |
17 | uniss2 4282 | . . . . . 6 | |
18 | 17 | 3ad2ant3 1019 | . . . . 5 |
19 | 16, 18 | eqssd 3520 | . . . 4 |
20 | limuni 4943 | . . . . 5 | |
21 | 20 | 3ad2ant1 1017 | . . . 4 |
22 | 19, 21 | eqtr4d 2501 | . . 3 |
23 | 22 | 3expia 1198 | . 2 |
24 | 14, 23 | impbid 191 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 A. wral 2807 E. wrex 2808
C_ wss 3475 U. cuni 4249 Ord word 4882
con0 4883 Lim wlim 4884 |
This theorem is referenced by: cflim3 8663 pwcfsdom 8979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 |
Copyright terms: Public domain | W3C validator |