MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  com35 Unicode version

Theorem com35 90
Description: Commutation of antecedents. Swap 3rd and 5th. (Contributed by Jeff Hankins, 28-Jun-2009.)
Hypothesis
Ref Expression
com5.1
Assertion
Ref Expression
com35

Proof of Theorem com35
StepHypRef Expression
1 com5.1 . . . 4
21com34 83 . . 3
32com45 89 . 2
43com34 83 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4
This theorem is referenced by:  swrdswrdlem  12684  bcthlem5  21767  3v3e3cycl1  24644  4cycl4v4e  24666  4cycl4dv4e  24668  nocvxminlem  29450  ad5ant125  33244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
  Copyright terms: Public domain W3C validator