Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  compss Unicode version

Theorem compss 8777
 Description: Express image under of the complementation isomorphism. (Contributed by Stefan O'Rear, 5-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a
Assertion
Ref Expression
compss
Distinct variable groups:   ,,   ,   ,

Proof of Theorem compss
StepHypRef Expression
1 compss.a . . . 4
21compsscnv 8772 . . 3
32imaeq1i 5339 . 2
4 difeq2 3615 . . . . 5
54cbvmptv 4543 . . . 4
61, 5eqtri 2486 . . 3
76mptpreima 5505 . 2
83, 7eqtr3i 2488 1
 Colors of variables: wff setvar class Syntax hints:  =wceq 1395  e.wcel 1818  {crab 2811  \cdif 3472  ~Pcpw 4012  e.cmpt 4510  'ccnv 5003  "`cima 5007 This theorem is referenced by:  isf34lem4  8778 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-mpt 4512  df-xp 5010  df-rel 5011  df-cnv 5012  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017
 Copyright terms: Public domain W3C validator