![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > compssiso | Unicode version |
Description: Complementation is an antiautomorphism on power set lattices. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
compss.a |
Ref | Expression |
---|---|
compssiso |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexg 4600 | . . . . 5 | |
2 | 1 | ralrimivw 2872 | . . . 4 |
3 | compss.a | . . . . 5 | |
4 | 3 | fnmpt 5712 | . . . 4 |
5 | 2, 4 | syl 16 | . . 3 |
6 | 3 | compsscnv 8772 | . . . . 5 |
7 | 6 | fneq1i 5680 | . . . 4 |
8 | 5, 7 | sylibr 212 | . . 3 |
9 | dff1o4 5829 | . . 3 | |
10 | 5, 8, 9 | sylanbrc 664 | . 2 |
11 | elpwi 4021 | . . . . . . . . 9 | |
12 | 11 | ad2antll 728 | . . . . . . . 8 |
13 | 3 | isf34lem1 8773 | . . . . . . . 8 |
14 | 12, 13 | syldan 470 | . . . . . . 7 |
15 | elpwi 4021 | . . . . . . . . 9 | |
16 | 15 | ad2antrl 727 | . . . . . . . 8 |
17 | 3 | isf34lem1 8773 | . . . . . . . 8 |
18 | 16, 17 | syldan 470 | . . . . . . 7 |
19 | 14, 18 | psseq12d 3597 | . . . . . 6 |
20 | difss 3630 | . . . . . . 7 | |
21 | pssdifcom1 3913 | . . . . . . 7 | |
22 | 12, 20, 21 | sylancl 662 | . . . . . 6 |
23 | dfss4 3731 | . . . . . . . 8 | |
24 | 16, 23 | sylib 196 | . . . . . . 7 |
25 | 24 | psseq1d 3595 | . . . . . 6 |
26 | 19, 22, 25 | 3bitrrd 280 | . . . . 5 |
27 | vex 3112 | . . . . . 6 | |
28 | 27 | brrpss 6583 | . . . . 5 |
29 | fvex 5881 | . . . . . 6 | |
30 | 29 | brrpss 6583 | . . . . 5 |
31 | 26, 28, 30 | 3bitr4g 288 | . . . 4 |
32 | relrpss 6581 | . . . . 5 | |
33 | 32 | relbrcnv 5382 | . . . 4 |
34 | 31, 33 | syl6bbr 263 | . . 3 |
35 | 34 | ralrimivva 2878 | . 2 |
36 | df-isom 5602 | . 2 | |
37 | 10, 35, 36 | sylanbrc 664 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 cvv 3109
\ cdif 3472 C_ wss 3475 C. wpss 3476
~P cpw 4012 class class class wbr 4452
e. cmpt 4510 `' ccnv 5003 Fn wfn 5588
-1-1-onto-> wf1o 5592
` cfv 5593 Isom wiso 5594 crpss 6579 |
This theorem is referenced by: isf34lem3 8776 isf34lem5 8779 isfin1-4 8788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-rpss 6580 |
Copyright terms: Public domain | W3C validator |