![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > con1bid | Unicode version |
Description: A contraposition deduction. (Contributed by NM, 9-Oct-1999.) |
Ref | Expression |
---|---|
con1bid.1 |
Ref | Expression |
---|---|
con1bid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con1bid.1 | . . . 4 | |
2 | 1 | bicomd 201 | . . 3 |
3 | 2 | con2bid 329 | . 2 |
4 | 3 | bicomd 201 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 |
This theorem is referenced by: pm5.18 356 necon1abidOLD 2706 necon1bbid 2707 onmindif 4972 ondif2 7171 cnpart 13073 sadadd2lem2 14100 isnirred 17349 isreg2 19878 kqcldsat 20234 trufil 20411 itg2cnlem2 22169 issqf 23410 eupath2lem3 24979 pjnorm2 26645 atdmd 27317 atmd2 27319 dfrdg4 29600 dalawlem13 35607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 |
Copyright terms: Public domain | W3C validator |