MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con2 Unicode version

Theorem con2 116
Description: Contraposition. Theorem *2.03 of [WhiteheadRussell] p. 100. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Wolf Lammen, 12-Feb-2013.)
Assertion
Ref Expression
con2

Proof of Theorem con2
StepHypRef Expression
1 id 22 . 2
21con2d 115 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4
This theorem is referenced by:  con2b  334  isprm5  14253  bj-con2com  34139  bj-axtd  34182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
  Copyright terms: Public domain W3C validator