![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > con4bii | Unicode version |
Description: A contraposition inference. (Contributed by NM, 21-May-1994.) |
Ref | Expression |
---|---|
con4bii.1 |
Ref | Expression |
---|---|
con4bii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con4bii.1 | . 2 | |
2 | notbi 295 | . 2 | |
3 | 1, 2 | mpbir 209 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184 |
This theorem is referenced by: 2false 350 19.35OLD 1688 2ralor 3027 gencbval 3155 eq0 3800 snnzb 4094 raldifsnb 4161 uni0b 4274 tsna1 30551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 |
Copyright terms: Public domain | W3C validator |