![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > coprimeprodsq | Unicode version |
Description: If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of and square. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
coprimeprodsq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 10912 | . . . . . . . 8 | |
2 | nn0z 10912 | . . . . . . . 8 | |
3 | gcdcl 14155 | . . . . . . . 8 | |
4 | 1, 2, 3 | syl2an 477 | . . . . . . 7 |
5 | 4 | 3adant2 1015 | . . . . . 6 |
6 | 5 | 3ad2ant1 1017 | . . . . 5 |
7 | 6 | nn0cnd 10879 | . . . 4 |
8 | 7 | sqvald 12307 | . . 3 |
9 | simp13 1028 | . . . . . . . . 9 | |
10 | 9 | nn0cnd 10879 | . . . . . . . 8 |
11 | nn0cn 10830 | . . . . . . . . . 10 | |
12 | 11 | 3ad2ant1 1017 | . . . . . . . . 9 |
13 | 12 | 3ad2ant1 1017 | . . . . . . . 8 |
14 | 10, 13 | mulcomd 9638 | . . . . . . 7 |
15 | simpl3 1001 | . . . . . . . . . . 11 | |
16 | 15 | nn0cnd 10879 | . . . . . . . . . 10 |
17 | 16 | sqvald 12307 | . . . . . . . . 9 |
18 | 17 | eqeq1d 2459 | . . . . . . . 8 |
19 | 18 | biimp3a 1328 | . . . . . . 7 |
20 | 14, 19 | oveq12d 6314 | . . . . . 6 |
21 | simp11 1026 | . . . . . . . 8 | |
22 | 21 | nn0zd 10992 | . . . . . . 7 |
23 | 9 | nn0zd 10992 | . . . . . . 7 |
24 | mulgcd 14184 | . . . . . . 7 | |
25 | 9, 22, 23, 24 | syl3anc 1228 | . . . . . 6 |
26 | simp12 1027 | . . . . . . 7 | |
27 | mulgcd 14184 | . . . . . . 7 | |
28 | 21, 23, 26, 27 | syl3anc 1228 | . . . . . 6 |
29 | 20, 25, 28 | 3eqtr3d 2506 | . . . . 5 |
30 | 29 | oveq2d 6312 | . . . 4 |
31 | mulgcdr 14186 | . . . . 5 | |
32 | 22, 23, 6, 31 | syl3anc 1228 | . . . 4 |
33 | 6 | nn0zd 10992 | . . . . 5 |
34 | gcdcl 14155 | . . . . . . . . . 10 | |
35 | 2, 34 | sylan 471 | . . . . . . . . 9 |
36 | 35 | ancoms 453 | . . . . . . . 8 |
37 | 36 | 3adant1 1014 | . . . . . . 7 |
38 | 37 | 3ad2ant1 1017 | . . . . . 6 |
39 | 38 | nn0zd 10992 | . . . . 5 |
40 | mulgcd 14184 | . . . . 5 | |
41 | 21, 33, 39, 40 | syl3anc 1228 | . . . 4 |
42 | 30, 32, 41 | 3eqtr3d 2506 | . . 3 |
43 | 2 | 3ad2ant3 1019 | . . . . . . . . . . . . . 14 |
44 | gcdid 14169 | . . . . . . . . . . . . . 14 | |
45 | 43, 44 | syl 16 | . . . . . . . . . . . . 13 |
46 | 45 | oveq1d 6311 | . . . . . . . . . . . 12 |
47 | simp2 997 | . . . . . . . . . . . . 13 | |
48 | gcdabs1 14172 | . . . . . . . . . . . . 13 | |
49 | 43, 47, 48 | syl2anc 661 | . . . . . . . . . . . 12 |
50 | 46, 49 | eqtrd 2498 | . . . . . . . . . . 11 |
51 | gcdass 14183 | . . . . . . . . . . . 12 | |
52 | 43, 43, 47, 51 | syl3anc 1228 | . . . . . . . . . . 11 |
53 | gcdcom 14158 | . . . . . . . . . . . 12 | |
54 | 43, 47, 53 | syl2anc 661 | . . . . . . . . . . 11 |
55 | 50, 52, 54 | 3eqtr3d 2506 | . . . . . . . . . 10 |
56 | 55 | oveq2d 6312 | . . . . . . . . 9 |
57 | 1 | 3ad2ant1 1017 | . . . . . . . . . 10 |
58 | 37 | nn0zd 10992 | . . . . . . . . . 10 |
59 | gcdass 14183 | . . . . . . . . . 10 | |
60 | 57, 43, 58, 59 | syl3anc 1228 | . . . . . . . . 9 |
61 | gcdass 14183 | . . . . . . . . . 10 | |
62 | 57, 47, 43, 61 | syl3anc 1228 | . . . . . . . . 9 |
63 | 56, 60, 62 | 3eqtr4d 2508 | . . . . . . . 8 |
64 | 63 | eqeq1d 2459 | . . . . . . 7 |
65 | 64 | biimpar 485 | . . . . . 6 |
66 | 65 | oveq2d 6312 | . . . . 5 |
67 | 66 | 3adant3 1016 | . . . 4 |
68 | 13 | mulid1d 9634 | . . . 4 |
69 | 67, 68 | eqtrd 2498 | . . 3 |
70 | 8, 42, 69 | 3eqtrrd 2503 | . 2 |
71 | 70 | 3expia 1198 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
` cfv 5593 (class class class)co 6296
cc 9511 1 c1 9514 cmul 9518 2 c2 10610 cn0 10820
cz 10889 cexp 12166 cabs 13067 cgcd 14144 |
This theorem is referenced by: coprimeprodsq2 14334 pythagtriplem6 14345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fl 11929 df-mod 11997 df-seq 12108 df-exp 12167 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-dvds 13987 df-gcd 14145 |
Copyright terms: Public domain | W3C validator |