![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > copsex2t | Unicode version |
Description: Closed theorem form of copsex2g 4740. (Contributed by NM, 17-Feb-2013.) |
Ref | Expression |
---|---|
copsex2t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 3120 | . . . 4 | |
2 | elisset 3120 | . . . 4 | |
3 | 1, 2 | anim12i 566 | . . 3 |
4 | eeanv 1988 | . . 3 | |
5 | 3, 4 | sylibr 212 | . 2 |
6 | nfa1 1897 | . . . 4 | |
7 | nfe1 1840 | . . . . 5 | |
8 | nfv 1707 | . . . . 5 | |
9 | 7, 8 | nfbi 1934 | . . . 4 |
10 | nfa2 1953 | . . . . 5 | |
11 | nfe1 1840 | . . . . . . 7 | |
12 | 11 | nfex 1948 | . . . . . 6 |
13 | nfv 1707 | . . . . . 6 | |
14 | 12, 13 | nfbi 1934 | . . . . 5 |
15 | opeq12 4219 | . . . . . . . . 9 | |
16 | copsexg 4737 | . . . . . . . . . 10 | |
17 | 16 | eqcoms 2469 | . . . . . . . . 9 |
18 | 15, 17 | syl 16 | . . . . . . . 8 |
19 | 18 | adantl 466 | . . . . . . 7 |
20 | 2sp 1866 | . . . . . . . 8 | |
21 | 20 | imp 429 | . . . . . . 7 |
22 | 19, 21 | bitr3d 255 | . . . . . 6 |
23 | 22 | ex 434 | . . . . 5 |
24 | 10, 14, 23 | exlimd 1914 | . . . 4 |
25 | 6, 9, 24 | exlimd 1914 | . . 3 |
26 | 25 | imp 429 | . 2 |
27 | 5, 26 | sylan2 474 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
E. wex 1612 e. wcel 1818 <. cop 4035 |
This theorem is referenced by: opelopabt 4764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 |
Copyright terms: Public domain | W3C validator |