![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > crt | Unicode version |
Description: The Chinese Remainder
Theorem: the function that maps to its
remainder classes M and N is 1-1
and onto when and
are coprime. (Contributed by Mario Carneiro,
24-Feb-2014.)
(Proof shortened by Mario Carneiro,
2-May-2016.) |
Ref | Expression |
---|---|
crt.1 | |
crt.2 | |
crt.3 | |
crt.4 |
Ref | Expression |
---|---|
crt |
M
, ,S
, ,N
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoelz 11829 | . . . . . 6 | |
2 | crt.1 | . . . . . 6 | |
3 | 1, 2 | eleq2s 2565 | . . . . 5 |
4 | simpr 461 | . . . . . . . 8 | |
5 | crt.4 | . . . . . . . . . 10 | |
6 | 5 | simp1d 1008 | . . . . . . . . 9 |
7 | 6 | adantr 465 | . . . . . . . 8 |
8 | zmodfzo 12018 | . . . . . . . 8 | |
9 | 4, 7, 8 | syl2anc 661 | . . . . . . 7 |
10 | 5 | simp2d 1009 | . . . . . . . . 9 |
11 | 10 | adantr 465 | . . . . . . . 8 |
12 | zmodfzo 12018 | . . . . . . . 8 | |
13 | 4, 11, 12 | syl2anc 661 | . . . . . . 7 |
14 | opelxpi 5036 | . . . . . . 7 | |
15 | 9, 13, 14 | syl2anc 661 | . . . . . 6 |
16 | crt.2 | . . . . . 6 | |
17 | 15, 16 | syl6eleqr 2556 | . . . . 5 |
18 | 3, 17 | sylan2 474 | . . . 4 |
19 | crt.3 | . . . 4 | |
20 | 18, 19 | fmptd 6055 | . . 3 |
21 | oveq1 6303 | . . . . . . . . . 10 | |
22 | oveq1 6303 | . . . . . . . . . 10 | |
23 | 21, 22 | opeq12d 4225 | . . . . . . . . 9 |
24 | opex 4716 | . . . . . . . . 9 | |
25 | 23, 19, 24 | fvmpt 5956 | . . . . . . . 8 |
26 | 25 | ad2antrl 727 | . . . . . . 7 |
27 | oveq1 6303 | . . . . . . . . . 10 | |
28 | oveq1 6303 | . . . . . . . . . 10 | |
29 | 27, 28 | opeq12d 4225 | . . . . . . . . 9 |
30 | opex 4716 | . . . . . . . . 9 | |
31 | 29, 19, 30 | fvmpt 5956 | . . . . . . . 8 |
32 | 31 | ad2antll 728 | . . . . . . 7 |
33 | 26, 32 | eqeq12d 2479 | . . . . . 6 |
34 | ovex 6324 | . . . . . . 7 | |
35 | ovex 6324 | . . . . . . 7 | |
36 | 34, 35 | opth 4726 | . . . . . 6 |
37 | 33, 36 | syl6bb 261 | . . . . 5 |
38 | 6 | adantr 465 | . . . . . . . 8 |
39 | 38 | nnzd 10993 | . . . . . . 7 |
40 | 10 | adantr 465 | . . . . . . . 8 |
41 | 40 | nnzd 10993 | . . . . . . 7 |
42 | simprl 756 | . . . . . . . . . 10 | |
43 | 42, 2 | syl6eleq 2555 | . . . . . . . . 9 |
44 | elfzoelz 11829 | . . . . . . . . 9 | |
45 | 43, 44 | syl 16 | . . . . . . . 8 |
46 | simprr 757 | . . . . . . . . . 10 | |
47 | 46, 2 | syl6eleq 2555 | . . . . . . . . 9 |
48 | elfzoelz 11829 | . . . . . . . . 9 | |
49 | 47, 48 | syl 16 | . . . . . . . 8 |
50 | 45, 49 | zsubcld 10999 | . . . . . . 7 |
51 | 5 | simp3d 1010 | . . . . . . . 8 |
52 | 51 | adantr 465 | . . . . . . 7 |
53 | coprmdvds2 14244 | . . . . . . 7 | |
54 | 39, 41, 50, 52, 53 | syl31anc 1231 | . . . . . 6 |
55 | moddvds 13993 | . . . . . . . 8 | |
56 | 38, 45, 49, 55 | syl3anc 1228 | . . . . . . 7 |
57 | moddvds 13993 | . . . . . . . 8 | |
58 | 40, 45, 49, 57 | syl3anc 1228 | . . . . . . 7 |
59 | 56, 58 | anbi12d 710 | . . . . . 6 |
60 | 45 | zred 10994 | . . . . . . . . 9 |
61 | 38, 40 | nnmulcld 10608 | . . . . . . . . . 10 |
62 | 61 | nnrpd 11284 | . . . . . . . . 9 |
63 | elfzole1 11836 | . . . . . . . . . 10 | |
64 | 43, 63 | syl 16 | . . . . . . . . 9 |
65 | elfzolt2 11837 | . . . . . . . . . 10 | |
66 | 43, 65 | syl 16 | . . . . . . . . 9 |
67 | modid 12020 | . . . . . . . . 9 | |
68 | 60, 62, 64, 66, 67 | syl22anc 1229 | . . . . . . . 8 |
69 | 49 | zred 10994 | . . . . . . . . 9 |
70 | elfzole1 11836 | . . . . . . . . . 10 | |
71 | 47, 70 | syl 16 | . . . . . . . . 9 |
72 | elfzolt2 11837 | . . . . . . . . . 10 | |
73 | 47, 72 | syl 16 | . . . . . . . . 9 |
74 | modid 12020 | . . . . . . . . 9 | |
75 | 69, 62, 71, 73, 74 | syl22anc 1229 | . . . . . . . 8 |
76 | 68, 75 | eqeq12d 2479 | . . . . . . 7 |
77 | moddvds 13993 | . . . . . . . 8 | |
78 | 61, 45, 49, 77 | syl3anc 1228 | . . . . . . 7 |
79 | 76, 78 | bitr3d 255 | . . . . . 6 |
80 | 54, 59, 79 | 3imtr4d 268 | . . . . 5 |
81 | 37, 80 | sylbid 215 | . . . 4 |
82 | 81 | ralrimivva 2878 | . . 3 |
83 | dff13 6166 | . . 3 | |
84 | 20, 82, 83 | sylanbrc 664 | . 2 |
85 | nnnn0 10827 | . . . . . 6 | |
86 | nnnn0 10827 | . . . . . 6 | |
87 | nn0mulcl 10857 | . . . . . . . . 9 | |
88 | hashfzo0 12488 | . . . . . . . . 9 | |
89 | 87, 88 | syl 16 | . . . . . . . 8 |
90 | fzofi 12084 | . . . . . . . . . 10 | |
91 | fzofi 12084 | . . . . . . . . . 10 | |
92 | hashxp 12492 | . . . . . . . . . 10 | |
93 | 90, 91, 92 | mp2an 672 | . . . . . . . . 9 |
94 | hashfzo0 12488 | . . . . . . . . . 10 | |
95 | hashfzo0 12488 | . . . . . . . . . 10 | |
96 | 94, 95 | oveqan12d 6315 | . . . . . . . . 9 |
97 | 93, 96 | syl5eq 2510 | . . . . . . . 8 |
98 | 89, 97 | eqtr4d 2501 | . . . . . . 7 |
99 | fzofi 12084 | . . . . . . . 8 | |
100 | xpfi 7811 | . . . . . . . . 9 | |
101 | 90, 91, 100 | mp2an 672 | . . . . . . . 8 |
102 | hashen 12420 | . . . . . . . 8 | |
103 | 99, 101, 102 | mp2an 672 | . . . . . . 7 |
104 | 98, 103 | sylib 196 | . . . . . 6 |
105 | 85, 86, 104 | syl2an 477 | . . . . 5 |
106 | 6, 10, 105 | syl2anc 661 | . . . 4 |
107 | 106, 2, 16 | 3brtr4g 4484 | . . 3 |
108 | 16, 101 | eqeltri 2541 | . . 3 |
109 | f1finf1o 7766 | . . 3 | |
110 | 107, 108, 109 | sylancl 662 | . 2 |
111 | 84, 110 | mpbid 210 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 A. wral 2807 <. cop 4035
class class class wbr 4452 e. cmpt 4510
X. cxp 5002 --> wf 5589 -1-1-> wf1 5590 -1-1-onto-> wf1o 5592 ` cfv 5593 (class class class)co 6296
cen 7533 cfn 7536 cr 9512 0 cc0 9513 1 c1 9514
cmul 9518 clt 9649 cle 9650 cmin 9828 cn 10561 cn0 10820
cz 10889 crp 11249
cfzo 11824 cmo 11996 chash 12405 cdvds 13986 cgcd 14144 |
This theorem is referenced by: phimullem 14309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-card 8341 df-cda 8569 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-fzo 11825 df-fl 11929 df-mod 11997 df-seq 12108 df-exp 12167 df-hash 12406 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-dvds 13987 df-gcd 14145 |
Copyright terms: Public domain | W3C validator |