![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > csbab | Unicode version |
Description: Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Revised by NM, 19-Aug-2018.) |
Ref | Expression |
---|---|
csbab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2443 | . . . 4 | |
2 | sbsbc 3331 | . . . 4 | |
3 | 1, 2 | bitri 249 | . . 3 |
4 | sbccom 3407 | . . . 4 | |
5 | df-clab 2443 | . . . . . 6 | |
6 | sbsbc 3331 | . . . . . 6 | |
7 | 5, 6 | bitri 249 | . . . . 5 |
8 | 7 | sbcbii 3387 | . . . 4 |
9 | 4, 8 | bitr4i 252 | . . 3 |
10 | sbcel2 3831 | . . 3 | |
11 | 3, 9, 10 | 3bitrri 272 | . 2 |
12 | 11 | eqriv 2453 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 [ wsb 1739
e. wcel 1818 { cab 2442 [. wsbc 3327
[_ csb 3434 |
This theorem is referenced by: csbsng 4088 csbuni 4277 csbxp 5086 csbdm 5202 csbwrdg 12570 abfmpeld 27492 abfmpel 27493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-in 3482 df-ss 3489 df-nul 3785 |
Copyright terms: Public domain | W3C validator |