MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbabgOLD Unicode version

Theorem csbabgOLD 3856
Description: Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) Obsolete as of 19-Aug-2018. Use csbab 3855 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
csbabgOLD
Distinct variable groups:   ,   ,

Proof of Theorem csbabgOLD
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 sbccom 3407 . . . 4
2 df-clab 2443 . . . . 5
3 sbsbc 3331 . . . . 5
42, 3bitri 249 . . . 4
5 df-clab 2443 . . . . . 6
6 sbsbc 3331 . . . . . 6
75, 6bitri 249 . . . . 5
87sbcbii 3387 . . . 4
91, 4, 83bitr4i 277 . . 3
10 sbcel2gOLD 3832 . . 3
119, 10syl5rbb 258 . 2
1211eqrdv 2454 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  [wsb 1739  e.wcel 1818  {cab 2442  [.wsbc 3327  [_csb 3434
This theorem is referenced by:  csbunigOLD  4278  csbxpgOLD  5087  csbrngOLD  5474  csbfv12gALTOLD  33621  csbingVD  33684  csbsngVD  33693  csbxpgVD  33694  csbrngVD  33696  csbunigVD  33698  csbfv12gALTVD  33699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-sbc 3328  df-csb 3435
  Copyright terms: Public domain W3C validator