![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > csbcnv | Unicode version |
Description: Move class substitution in and out of the converse of a function. Version of csbcnvgALT 5192 without a sethood antecedent but depending on more axioms. (Contributed by Thierry Arnoux, 8-Feb-2017.) (Revised by NM, 23-Aug-2018.) |
Ref | Expression |
---|---|
csbcnv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbr 4505 | . . . 4 | |
2 | 1 | opabbii 4516 | . . 3 |
3 | csbopab 4784 | . . 3 | |
4 | df-cnv 5012 | . . 3 | |
5 | 2, 3, 4 | 3eqtr4ri 2497 | . 2 |
6 | df-cnv 5012 | . . 3 | |
7 | 6 | csbeq2i 3836 | . 2 |
8 | 5, 7 | eqtr4i 2489 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 [. wsbc 3327
[_ csb 3434 class class class wbr 4452
{ copab 4509 `' ccnv 5003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-cnv 5012 |
Copyright terms: Public domain | W3C validator |