![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > csbcomgOLD | Unicode version |
Description: Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005.) Obsolete as of 18-Aug-2018. Use csbcom 3837 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
csbcomgOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3118 | . 2 | |
2 | elex 3118 | . 2 | |
3 | sbccom 3407 | . . . . . 6 | |
4 | 3 | a1i 11 | . . . . 5 |
5 | sbcel2gOLD 3832 | . . . . . . 7 | |
6 | 5 | sbcbidv 3386 | . . . . . 6 |
7 | 6 | adantl 466 | . . . . 5 |
8 | sbcel2gOLD 3832 | . . . . . . 7 | |
9 | 8 | sbcbidv 3386 | . . . . . 6 |
10 | 9 | adantr 465 | . . . . 5 |
11 | 4, 7, 10 | 3bitr3d 283 | . . . 4 |
12 | sbcel2gOLD 3832 | . . . . 5 | |
13 | 12 | adantr 465 | . . . 4 |
14 | sbcel2gOLD 3832 | . . . . 5 | |
15 | 14 | adantl 466 | . . . 4 |
16 | 11, 13, 15 | 3bitr3d 283 | . . 3 |
17 | 16 | eqrdv 2454 | . 2 |
18 | 1, 2, 17 | syl2an 477 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
cvv 3109
[. wsbc 3327 [_ csb 3434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-sbc 3328 df-csb 3435 |
Copyright terms: Public domain | W3C validator |