![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > csbdm | Unicode version |
Description: Distribute proper substitution through the domain of a class. (Contributed by Alexander van der Vekens, 23-Jul-2017.) (Revised by NM, 24-Aug-2018.) |
Ref | Expression |
---|---|
csbdm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbab 3855 | . . 3 | |
2 | sbcex2 3381 | . . . . 5 | |
3 | sbcel2 3831 | . . . . . 6 | |
4 | 3 | exbii 1667 | . . . . 5 |
5 | 2, 4 | bitri 249 | . . . 4 |
6 | 5 | abbii 2591 | . . 3 |
7 | 1, 6 | eqtri 2486 | . 2 |
8 | dfdm3 5195 | . . 3 | |
9 | 8 | csbeq2i 3836 | . 2 |
10 | dfdm3 5195 | . 2 | |
11 | 7, 9, 10 | 3eqtr4i 2496 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 E. wex 1612
e. wcel 1818 { cab 2442 [. wsbc 3327
[_ csb 3434 <. cop 4035 dom cdm 5004 |
This theorem is referenced by: sbcfng 5733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-in 3482 df-ss 3489 df-nul 3785 df-br 4453 df-dm 5014 |
Copyright terms: Public domain | W3C validator |