![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > csbeq2d | Unicode version |
Description: Formula-building deduction rule for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
csbeq2d.1 | |
csbeq2d.2 |
Ref | Expression |
---|---|
csbeq2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq2d.1 | . . . 4 | |
2 | csbeq2d.2 | . . . . 5 | |
3 | 2 | eleq2d 2527 | . . . 4 |
4 | 1, 3 | sbcbid 3385 | . . 3 |
5 | 4 | abbidv 2593 | . 2 |
6 | df-csb 3435 | . 2 | |
7 | df-csb 3435 | . 2 | |
8 | 5, 6, 7 | 3eqtr4g 2523 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
F/ wnf 1616 e. wcel 1818 { cab 2442
[. wsbc 3327 [_ csb 3434 |
This theorem is referenced by: csbeq2dv 3835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-sbc 3328 df-csb 3435 |
Copyright terms: Public domain | W3C validator |