![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > csbeq2i | Unicode version |
Description: Formula-building inference rule for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
csbeq2i.1 |
Ref | Expression |
---|---|
csbeq2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq2i.1 | . . . 4 | |
2 | 1 | a1i 11 | . . 3 |
3 | 2 | csbeq2dv 3835 | . 2 |
4 | 3 | trud 1404 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 wtru 1396 [_ csb 3434 |
This theorem is referenced by: csbnest1g 3845 csbvarg 3848 csbsng 4088 csbprg 4089 csbuni 4277 csbunigOLD 4278 csbmpt12 4786 csbxp 5086 csbxpgOLD 5087 csbcnv 5191 csbcnvgALT 5192 csbdm 5202 csbres 5281 csbresgOLD 5282 csbrn 5473 csbrngOLD 5474 csbfv12 5906 csbfv12gOLD 5907 fvmpt2curryd 7019 csbnegg 9840 csbwrdg 12570 matgsum 18939 disjxpin 27447 csbfv12gALTOLD 33621 csbima12gALTOLD 33622 bj-csbsn 34471 cdleme31so 36105 cdleme31sn 36106 cdleme31sn1 36107 cdleme31se 36108 cdleme31se2 36109 cdleme31sc 36110 cdleme31sde 36111 cdleme31sn2 36115 cdlemkid3N 36659 cdlemkid4 36660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-sbc 3328 df-csb 3435 |
Copyright terms: Public domain | W3C validator |