MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbfv2g Unicode version

Theorem csbfv2g 5908
Description: Move class substitution in and out of a function value. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbfv2g
Distinct variable group:   ,

Proof of Theorem csbfv2g
StepHypRef Expression
1 csbfv12 5906 . 2
2 csbconstg 3447 . . 3
32fveq1d 5873 . 2
41, 3syl5eq 2510 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  e.wcel 1818  [_csb 3434  `cfv 5593
This theorem is referenced by:  csbfv  5909  csbfvgOLD  5910  ixpsnval  7492  swrdspsleq  12673  sumeq2ii  13515  fsumabs  13615  prodeq2ii  13720  fprodabs  13778  ixpsnbasval  17855  coe1fzgsumdlem  18343  evl1gsumdlem  18392  pm2mp  19326  cayhamlem4  19389  nbgraopALT  24424  iuninc  27428  cdlemk39s  36665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-nul 4581  ax-pow 4630
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-dm 5014  df-iota 5556  df-fv 5601
  Copyright terms: Public domain W3C validator