Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbfvgOLD Unicode version

Theorem csbfvgOLD 5910
 Description: Substitution for a function value. (Contributed by NM, 1-Jan-2006.) Obsolete as of 20-Aug-2018. Use csbfv 5909 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
csbfvgOLD
Distinct variable group:   ,

Proof of Theorem csbfvgOLD
StepHypRef Expression
1 csbfv2g 5908 . 2
2 csbvarg 3848 . . 3
32fveq2d 5875 . 2
41, 3eqtrd 2498 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  =wceq 1395  e.wcel 1818  [_csb 3434  `cfv 5593 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-nul 4581  ax-pow 4630 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-dm 5014  df-iota 5556  df-fv 5601
 Copyright terms: Public domain W3C validator