![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > csbhypf | Unicode version |
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 3156 for class substitution version. (Contributed by NM, 19-Dec-2008.) |
Ref | Expression |
---|---|
csbhypf.1 | |
csbhypf.2 | |
csbhypf.3 |
Ref | Expression |
---|---|
csbhypf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbhypf.1 | . . . 4 | |
2 | 1 | nfeq2 2636 | . . 3 |
3 | nfcsb1v 3450 | . . . 4 | |
4 | csbhypf.2 | . . . 4 | |
5 | 3, 4 | nfeq 2630 | . . 3 |
6 | 2, 5 | nfim 1920 | . 2 |
7 | eqeq1 2461 | . . 3 | |
8 | csbeq1a 3443 | . . . 4 | |
9 | 8 | eqeq1d 2459 | . . 3 |
10 | 7, 9 | imbi12d 320 | . 2 |
11 | csbhypf.3 | . 2 | |
12 | 6, 10, 11 | chvar 2013 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
F/_ wnfc 2605
[_ csb 3434 |
This theorem is referenced by: disji2 4439 disjprg 4448 disjxun 4450 tfisi 6693 coe1fzgsumdlem 18343 evl1gsumdlem 18392 iundisj2 21959 disji2f 27438 disjif2 27442 iundisj2f 27449 iundisj2fi 27602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-sbc 3328 df-csb 3435 |
Copyright terms: Public domain | W3C validator |