Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbidmgOLD Unicode version

Theorem csbidmgOLD 3847
 Description: Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008.) Obsolete as of 18-Aug-2018. Use csbidm 3846 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
csbidmgOLD
Distinct variable group:   ,

Proof of Theorem csbidmgOLD
StepHypRef Expression
1 elex 3118 . 2
2 csbnest1g 3845 . . 3
3 csbconstg 3447 . . . 4
43csbeq1d 3441 . . 3
52, 4eqtrd 2498 . 2
61, 5syl 16 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  =wceq 1395  e.wcel 1818   cvv 3109  [_csb 3434 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-sbc 3328  df-csb 3435
 Copyright terms: Public domain W3C validator