Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbie Unicode version

Theorem csbie 3460
 Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.)
Hypotheses
Ref Expression
csbie.1
csbie.2
Assertion
Ref Expression
csbie
Distinct variable groups:   ,   ,

Proof of Theorem csbie
StepHypRef Expression
1 csbie.1 . 2
2 nfcv 2619 . 2
3 csbie.2 . 2
41, 2, 3csbief 3459 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  =wceq 1395  e.wcel 1818   cvv 3109  [_csb 3434 This theorem is referenced by:  pofun  4821  eqerlem  7362  mptnn0fsuppd  12104  fsum  13542  fsumcnv  13588  fsumshftm  13596  fsum0diag2  13598  fprod  13748  fprodcnv  13787  ruclem1  13964  odval  16558  psrass1lem  18029  mamufval  18887  pm2mpval  19296  isibl  22172  dfitg  22176  dvfsumlem2  22428  fsumdvdsmul  23471  disjxpin  27447  bpolyval  29811  fphpd  30750  monotuz  30877  oddcomabszz  30880  fnwe2val  30995  fnwe2lem1  30996  frege72  37963 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-sbc 3328  df-csb 3435
 Copyright terms: Public domain W3C validator